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Received 15 November 1978, in final form 21 January 1980 

Abstract. The lower and upper bounds including variation of the frequency are calculated 
for the partition function of oscillators of the quartic type. They are shown to be fair 
approximations to the partition function calculated from eigenvalues given by Hioe and 
Montroll. The upper bound presents a very good high-temperature approximation which 
can be differentiated analytically giving also closed formulae for the thermodynamic 
functions H, E, S, C,. Perturbation theory is discussed in terms of operator-free generating 
functions. As expected, it works well only for intermediate temperatures and for small 
anharmonicity. Using a technique by Fisher for convex functions, upper and lower bounds 
for the entropy are also calculated from the exact upper and lower bounds to the partition 
function. 

1. Introduction 

Working on problems in the theory of molecular quantum dynamics, we were interested 
in the level density of strongly anharmonic coupled oscillators. For high excitation 
energies this is a meaningful description. The level density and partition function are 
interrelated by a Laplace transform which can be evaluated numerically or, after a 
steepest-descent approximation, analytically. The problem reduces to the calculation 
of the partition function. 

Eigenvalues can be calculated approximately only for low energies using matrix 
diagonalisation techniques. For high energies no general method existed to our 
knowledge, though semiclassical techniques look very promising (Hioe et a1 1978, 
Powell and Percival 1979). It seems, therefore, more appropriate to avoid the 
calculation of eigenvalues and the summation of Boltzmann factors by methods which 
are applied directly to the partition function. We shall investigate subsequently 
variational and perturbation methods. 

We consider as an example for the application of these techniques the quartic 
anharmonic oscillator with Hamiltonian 
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the standard model for anharmonic vibrations in quantum field theory, solid state and 
molecular physics. A large variety of analytical and numerical techniques for finding 
eigenvalues and eigenfunctions has been developed. Though Hioe and Montroll 
(1975), by a combination of analytical and numerical techniques, derived analytical 
expressions for the eigenvalues for different regions of the coupling constant A, suitable 
for all applications, more than twenty articles have been published since then, dealing 
with other techniques. 

The situation is different for the partition function. Of course one can sum the 
Boltzmann factors formed with the Hioe-Montroll eigenvalues numerically. This was 
done by Schwarz (1976) who derived by several unclear approximations analytical 
expressions for the thermodynamic functions A, S, E, C,. Pant and Mitra (1979) gave 
an interpolation formula for the Hioe-Montroll eigenvalues and also derived a 
numerical partition function. Path integral methods were applied by Miller (1971) and 
by Jorish and Zitserman (1975, 1976) to the one- and two-dimensional quartic 
oscillator. A related but complicated technique was also applied by Mathews and 
Seshadri (1975) in the approximate evaluation of the anharmonic oscillator density 
matrix in terms of elliptic functions. All these techniques present difficulties for coupled 
anharmonic oscillator partition functions. 

The present paper, therefore, aims at a test of variational and perturbation 
techniques for the partition function of quartic anharmonic oscillator type model 
systems. We check our calculations against the numerical partition function from 
Hioe-Montroll eigenvalues. For coupled systems only the recent important articles by 
Hioe (1976, 1977, 1978) are known. Their results will be discussed thoroughly in a 
forthcoming article by Bohmann (1980). The upper bound, which will be derived 
subsequently, is a good approximation to the high-temperature partition function. As it 
is given for the quartic oscillator model system in closed form, high-temperature 
formulae for the thermodynamic functions can be easily derived. Though great 
progress in trace inequalities for the entropy of coupled systems has been made in 
recent years, no direct trace inequality for the entropy was found in the literature. A 
method by Ruelle (1963) and Fisher (1965) will be used to derive upper and lower 
bounds to the entropy from upper and lower bounds to the partition function. In a 
previous paper we showed that thermodynamic perturbation theory in the Schwinger 
form can be used in the evaluation of molecular partition functions (Witschel et al 
1977). We shall, therefore, discuss generating functions for arbitrary order of the 
perturbing power of coordinate or momentum and of the order of perturbation theory. 
It is the only generally applicable method for anharmonic oscillator systems and it takes 
accidental resonances like Fermi or Darling-Dennison resonance exactly into account. 
This is important from the point of view of irregularity of spectra, which was discussed 
recently by Powell and Percival (1979). 

The paper is organised as follows. Section 2 sketches the trace inequalities, Bloch's 
theorem, perturbation theory and the different model Hamiltonians. In 0 3 we discuss 
the lower bounds and in $4 the upper bounds. Section 5 gives the results for the 
perturbation theory. In $ 6 we derive exact upper and lower bounds to the entropy 
using the Ruelle-Fisher technique. The extended numerical calculations are discussed 
in 0 7. A short Appendix gives, for convenience, the necessary formulae from the 
theory of special functions. 
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2. Trace inequalities, Bloch's theorem, perturbation theory and model 
Hamiltonians 

2.1. Trace inequalities as upper and lower bounds 

Trace inequalities are often used in the calculation of the partition function, in the 
following abbreviated by PF. As a good review is available (Girardeau and Mazo 1973) 
we do not duplicate the references but only add some important results. Breitenecker 
and Grumm (1972) treated the upper or Golden-Thompson inequality in detail. 
Further work was done by Lieb and co-authors (1973a, b, Lieb and Ruskai 1973a, b), 
who were mainly interested in the sub-additivity of the entropy and in the Wigner- 
Yanase conjecture. In this connection the comprehensive review by Wehrl (1978) 
should be consulted. A further interesting development was given recently by Leschke 
(1979) who derived upper and lower bounds to the PF of boson systems using Feynman 
path integrals. We can summarise these recent results: no direct trace inequalities are 
available in the literature for S or C,. 

For the lower bound the Gibbs-Bogoliubov inequality is used. We shall add to the 
list of references by Girardeau and Mazo a comprehensive review article by Falk (1970) 
symmarising the work on this inequality and its cltssical counterpart.. The Hamiltonian 
H can be split quite arbitrarily into two parts Ho and fil, where fil, in contrast to 
perturbation theory, need not be small. The inequality reads 

Z = Tr[exp(-Pfi)] a Zo exp(-P(fil)o) (2.1) 

where Zo = Tr[exp(-Pfio)] and P = (kBT)-' .  (fit)o is the thermal average of fil formed 
with go, 

(I?,), = 2,' Tr[fil exp(-Pfio)]. (2.2) 

The upper bound or Golden-Thompson inequality is 

Z s Tr[exp(-@fio) exp(-@fil)]. (2.3) 

By a suitable definition variational parameters can be built in, which can be varied 
numerically or analytically and which lead to improved upper and lower bounds. In 
treating operator traces one must be careful, as by invalid trace operations wrong results 
may occur. It is especially dangerous to use the cyclic invariance of the trace or to 
introduce commutators. 

2.2. Characteristic function of the Bloch theorem 

Bloch's theorem (Messiah 1964) for the probability distribution of a linear combination 
of the coordinate and momentum of the harmonic oscillator states that it is a Gaussian. 
The characteristic function of this distribution is useful in the calculation of thermal 
averages of arbitrary powers of coordinate and momentum. We write the characteristic 
function @(t)  in a form useful for our applications. 

Zo@(t) = Tr{exp[it(ald + a ~ ? ) ]  exp(-Pfio)) = exp[-t2(a: +a i )R /41  (2.4) 

Zo = [2 sinh(~/2)]-', (2.5) 

with 
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R = coth(c/2), 

E = Phw, P = (kBT)-'. 

2.3. Thermodynamic perturbation theory 

Only for a few cases like the harmonic oscillator or the two-dimensional Ising model is it 
possible to evaluate the PF exactly. In many cases a form of thermodynamic pertur- 
bation theory is used. Different formulations are compared by Saenz and O'Rourke 
(1955) who attributed the expansion 

Tr{exp[--P + 8111) 
= Tr[exp(-Pfio)] - P  Tr[fil e ~ p ( - P ~ ~ ) ]  

x A, exp[-PAosl(l - s2)1 . . . A, e x p [ - ~ E i ~ s ~ s 2  . . . s n l } + .  . . 
to Schwinger. The ordering transformations can be performed with the well known 
Hausdorff formula (Messiah 1964) 

exp(aA 113 exp(-aA) 

= B +a[A, B]-+(a2/2!)[A, [A, $]-I+. . . 

= C (am/m!){sm,B}-.  

(2.9) 
m 

m =O 

This type of thermodynamic perturbation theory is closely related to the disentangling 
of exponential operators. A special example for a related path integral-perturbation 
method applied to coupled anharmonic oscillators was given by Papadopoulos (1969). 

2.4. Anharmonic oscillators of the quartic type 

H1: 

This is the standard quartic anharmonic oscillator (equation (1)) which will be used 
extensively below. 

fi = t 2 / 2 m  + $mw2d2 + k4d4 = $hw(F2 + 6') + A  hwO4. (2.10) 

2 

i = l  
H2: I? = goi +A1&&, (2.11) 

fi oi - -p i /2m A2 +tmw:d:. (2.12) 

This Hamiltonian was discussed in connection with the regular and irregular spectra of 
quantum dynamical systems by Pomphrey (1974), but it is of less importance in theory, 
as it is a system of coupled harmonic oscillators. 

H3  : (2.13) 

Some authors (see Beck 1976) use this Hamiltonian in the theory of structural phase 

2 

i = l  
A = 1 Aoi + A  14; +A,$; + A1241(i2.  
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transitions. More interest has been found in 

H4 : A= 1 Aoi+Alci ' :+A2ci~+Al2Li:q*:  
2 

i = l  
(2.14) 

which was treated extensively by Hioe (1977) and by Hioe et a1 (1978) who derived not 
only the low lying eigenvalues but also, from WKB-type calculations, the level density 
at high energies. 

A system which was, to our knowledge, not discussed in the literature is 

H5 : 
4 

A = 1 AOi + (c kiCji) . 
i i 

(2.15) 

It is necessary to investigate the eigenvalues of this Hamiltonian in the future. 

3. Lower bound with variation 

Following a suggestion by Feynman (1972), the lower bound to the partition function of 
an anharmonic oscillator can be written in a form allowing a later variation of the 
frequency and the equilibrium position of the harmonic reference oscillator. For 
symmetric potentials the latter variation does not improve the bound, whereas for 
asymmetrical potentials it gives a strong improvement. 

We consider the quartic anharmonic oscillator (QA), equation (1). A term 
(mw*'/2)(i2 is added and subtracted. The Hamiltonian now reads 

A,* = (hw*/2)(P*2 + do2), (3.1) 

(3.2) A* 1 - - h w ( y d * 2 + A d * 4 ) ,  

y = (w2-w*2)/2ww*, (3.3) 

A = A ( w / w * ) ~ .  (3.4) 

with 

The thermal average (I?? )o is calculated in the basis of I?:, using the characteristic 
function of 0 2.3. As a function of w* the lower bound is 

2 2 ZLB = 2: exp[-c(iyR * -$AR*2)1 

with 

2: = [2 sinh(Phw*/2)]-', 

R* = coth(phw*/2). 

(3.5) 

Unfortunately U *  can only be varied numerically as it occurs in the transcendental 
functions R* and 2:. For unsymmetrical potentials containing even and odd powers of 
Q, the simultaneous and independent variation of both the equilibrium position and the 
frequency w * leads to coupled transcendental equations. For some special potentials 
the variation of the equilibrium position can first be performed algebraically followed 
by a numerical variation of U * .  For the Morse oscillator we treated the mathematics 
and the numerical variations in detail (Bohmann and Witschel 1978). 

The lower bounds including variations of the frequencies can be evaluated for the 
Hamiltonians Hl-H5. We vary the frequencies numerically until they show an 
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extremum. In any case this is an improvement of the bounds though, possibly, we did 
not obtain the best values for the variational parameters. In addition it should be 
remarked that we calculated lower bounds for Hamiltonians of the types 

A = A. + A  exp(-Bd2) + c e x p ( - ~ d ~ )  

and 

the Nielsen Hamiltonian of molecular spectroscopy. A special example of this Hamil- 
tonian is the Henon-Heiles Hamiltonian, 

(3.10) 

the standard model in the recent important investigations of regular and irregular 
spectra and quantum ergodicity (Powell and Percival1979). In the latter case we varied 
frequency and internuclear distance. As operators belonging to different normal 
vibrations commute, the calculations can be performed after decoupling. For example, 
we use H5 for two coupled oscillators, 

A=@’ +Ab2’ +(~1dl+~2&)~,  (3.11) 

where the indices refer to the normal modes ‘1’ and ‘2’. As a function of the two 
variation parameters wT and U ;  the lower bound reads 

(3.12) 

4. Upper bounds to the partition function for various model systems 

4.1. Illustration of the technique-and application to the quartic anharmonic oscillator 

Including the variation parameter U * ,  the upper bound to the partition function of the 
quartic anharmonic oscillator is given by 

ZUB =Tr{exp(-pfiz) e x p [ - ~ ( h d * ~ f y d * ~ ) ] } .  (4.1) 

Using the well known Laplace transform for a Gaussian (Gradshteyn and Ryzhik 1965, 
no. 3.323-2) twice, we obtain a form of the trace suitable for the application of the 
characteristic function of 0 2.2. 

m m 

ZUB = dx e-’’ dy e-” Tr{exp(-pfi:) e x p [ - 2 i y ( 2 i x J ~ h + ~ y ) ~ ’ ~ ~ * ] } ,  
I T  -m 
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The trace is evaluated and the first back-transformation performed: 

m 

I, - - z&-1/2 dy exp[-y2(1 + E ~ R * ) - ~ ~ E A R * ~ ] .  (4.4) 

This integral is known (Gradshteyn and Ryzhik 1965, no. 3.323-3) and has already 
been used in connection with the classical partition function of the quartic anharmonic 
oscillator and with a certain type of quantum field theory. The final result is 

with 

[ = (1 +EyR*)2/8EAR*2. (4.6) 

According to Abramowitz and Stegun (1965, p 692), the modified Bessel function 
KIl4(l) can be expressed in terms of the parabolic cylinder function D-I/Z(~’) according 
to 

U(0,  X )  = IT-~’*(x /~)~/ ’  K1/4(x2/4), U ( a ,  x )  = D-a-l/2(x). (4.7) 

This formulation has the advantage that the extended tables of U ( a ,  x )  given by 
Abramowitz and Stegun (1965, p 702) and the recursion-derivation formulae for the 
parabolic cylinder function can be used. As the upper bound including variation of the 
frequency is a very good high-temperature approximation, the thermodynamic 
functions H, E, S, C, can be easily derived from equation (4.5). We do not give the final 
formulae as they can be written down immediately, but are very lengthy. We give the 
entropy without variation of the frequency for high temperatures in table 5. 

Finally, it should be remarked that the result can also be found from a direct 
integration of the diagonal harmonic oscillator density matrix p ( x ,  x ;  p ) .  The trans- 
formation technique seems to be more appropriate for coupled anharmonic oscillators. 

4.2. Generalisation to coupled anharmonic oscillators 

This result can be easily generalised to coupled anharmonic oscillators of the type H5, 
which after a transformation to normal coordinates reads 

The same integral transforms and trace technique are applied. After the second 
Laplace transform, the argument of the exponential is linear in Qk, so that the traces can 
be calculated separately according to equation (4.4). 

As this Hamiltonian has not found application in physics as yet, we only give the 
result without variation of the frequency. The anharmonic part H1, 

= ( A ~ O ~ + A ~ C L ) ~ ,  (4.9) 
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gives, with the abbreviation Fk = p1l4Ak, the upper bound 

ZUB = Tr{exp[-P(fih” + f i h 2 ” ) 3  exp[-(Fldl + F2d2)4} 
+W +m 

-1 = 7r dx eFX2 dy e-’* Tr{exp[-p(fib” +fib2’)]  I, 
x exp[-2iy J2ix ( ~ ~ d ~  + F ~ & ) ] ) .  

(4.10) 

Using equation (4.2), this is 
c m  +m 

ZUB = IT-’ I-, dx e-x2 

zo=zo zo , 
A = R ‘“F: + R (”F:. 

dy e-y2Zo exp(-2ixy2 A )  (4.11) I, 
with 

(4.12) 

(4.13) 

(1) ( 2 )  

The back-transformations are identical to the one-dimensional case, leading to 

ZU, = Zo(27r1/2A)-1 e~p[(8A~)-’]K~/~[(8A~)-~]. (4.14) 

4.2.1. Type H2. The Hamiltonian H2 is used in the ordinary coordinate 
representation. For a special choice of A l z  it was used as a model system for irregularity 
by Pomphrey (1974). We derive the upper bond for A12>0, using the diagonal 
harmonic oscillator density matrix 

(4.15) P(4,  4 ;  P )  = a exp(-b@), 

mu 
b=-  tanh(phu/2), 

a = (  21rh sinhphu h 
(4.16) 

and consider the upper bound 

as thermal average, calculated with p(q, q ;  p) :  

This integral is known (A3). It leads to 

(4.19) 

Thermodynamic functions as high-temperature approximations can be calculated using 
the derivation-recursion relations for modified Bessel functions. 

4.2.2. Types H3 and H4. For both types the upper bound can be calculated by the 
transformation technique (Bohmann 1979). Unfortunately the final back-trans- 
formation cannot be performed analytically. After a substitution in terms of polar 
coordinates it remains to solve a simple integral numerically. As the calculations are 



Quartic type anharmonic oscillators 2743 

more complicated and as it is necessary to compare the numerical results to the 
important work of Hioe and Montroll on coupled anharmonic oscillators, we postpone 
these calculations to a later paper. It should be mentioned that expansion of the 
coupling terms A12x1x2 and A12x:x: in a power series and application of p ( x ,  x ; p )  as in 
the preceding case leads to oscillating divergent series, which, however, may be 
summable according to the techniques discussed by Bender and Orszag (1978). 

5. Thermodynamic perturbation theory for the QA 

It has already been mentioned that in contrast to the Rayleigh-Schrodinger theory of 
the aA-eigenvalues (Simon 1970, Graffi and Grecchi 1978) nothing is known on the 
high-order behaviour of the thermodynamic perturbation theory. A disadvantage in a 
previous formulation was that the formulae contain non-ordered products of boson 
creation and annihilation operators, leading to complicated operator ordering 
expressions. Using the Bloch theorem, it is easy to give generating functions for 
arbitrary powers of the coordinate (or momentum) in the perturbation theory. They are 
free of non-commuting operators and present the simple but tedious algebraic- 
combinatorial problem of comparing the coefficients of equal powers of an ordering 
parameter. We plan a systematic investigation of the higher-order terms with respect to 
convergence and summability with the techniques given by Bender and Orszag (1978). 
We show the first- and second-order terms as an example. We have 

Tr{exp[-P(fi0+At)])=P(O)+P(l)+P(2)+. . . . (5.1) 

P(1) presents no difficulties and will be written down subsequently, whereas in P(2) the 
ordering integration appears for the first time. 

1 

P(2) = ;(Ahwp)’ Tr( dsl exp[-Pfio(l -s1)]64 exp(-pfiosl)h4). 
0 

Using the occupation number representation 

6 = 2-”7a^+ + a*) with [L i ,  a^+]- = 1 

and the Hausdorff transformation (equation (2.9)), we have 

(5.2) 

(5.3) 

1 

P(2) = (A2e2/32) Tr(  lo dsl exp(-pfio)[d’ exp(phwsl)+d e x p ( - p h w ~ ~ ) ] ~ ( d t + d ) ~ ) .  

(5.4) 
Instead of performing normal ordering, one writes the generating function G(2) as 

G(2) = Tr{exp(-pfio) exp[kl(d+aT +Lial)] exp[k2(d++d)]} ( 5 . 5 )  

where kl, k2  are ordering parameters and 

aT =exp(+phwsl), a1 = exp(-phwsl). 

Application of the Baker-Campbell-Hausdorff formula leads exactly to the form of the 
characteristic function (equation (2.4)): 
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(5.7) 

Expansion and comparison leads to 

P(0)  = zo, P(1) = -3dR2Zo/4, 

P(2)=Zo[(~A)’/32]{9R~+18R’[(R -1)’Y(2w)+2(R2-1) 

+(R +l)’Y(-2~)]+z[(R - 1 ) 4 Y ( 4 ~ ) + ( R  + 1 ) 4 Y ( - 4 ~ )  

+4(R + 1)(R -1)3Y(2w)+4(R - 1)(R + 1 ) 3 Y ( - 2 ~ ) + 6 ( R 2 -  l)’]}. 
(5.8) 

We give the results for second-order perturbation theory in comparison to variational 
results with 

Y ( z )  = [exp(phz) - l ] / P h t .  (5.9) 

Higher-order terms have a similar symmetric structure like P(2) but the calculation of 
the coefficients is tedious. Preliminarily it should be noted that for very high tempera- 
tures corresponding to small p the series seem to diverge, as the third-order term is 
much larger than the second. For intermediate temperatures and not too large 
anharmonicity, the third-order term is smaller than P(2). No final conclusion can be 
drawn as yet. As, to second order, it can be shown explicitly that the Schwinger 
expansion corresponds to Rayleigh-Schrodinger perturbation theory, it may be possi- 
ble to apply similar summation techniques. 

6. The entropy function for the quartic anharmonic oscillator 

Good approximations for the partition function Z are interesting from a theoretical 
point of view, but from a practical point of view it is necessary to know bounds to the 
thermodynamic functions S, C,, . . , Though these quantities can be expressed in terms 
of the first and second derivatives of the free energy F = -(l/p) In Z with respect to p, 
derivatives of the bounds to Z do not lead necessarily to bounds to S, C,. . . , For 
example, the bounds to 2 can show severe oscillations so that their derivatives do not 
resemble the behaviour of the derivatives of 2. Direct inequalities for these ther- 
modynamic functions applicable to systems with perturbations are not known. 
However, for the special case of convex functions, it was shown by Ruelle (1963) and 
Fisher (1965) how bounds to the first derivative can be obtained from bounds to the 
original function. In the derivation of bounds to the entropy function of the quartic 
anharmonic oscillator we follow the way outlined by Fisher. 

The entropy function in a dimensionless form can be expressed in terms of the free 
energy functions as 

(6.1) S ( p )  = (I/kB)S = p’aF/ap. 
As the following relation holds, 

a2F/ap’s 0, 

F ( p )  is a convex function in the sense of Fisher, and the upper and lower bounds to s(p)  
at a point p = Po can be taken immediately from his article: 

S ( p 0 )  SLB(P0) = @ E  [ F L B ( P d  - F U B ( P O ) I / ( P I  - P O ) ,  Pl>PO, (6.3) 

~ ( p o )  sUB(p0)  = P E [ F U B ( P O ) - F L B ( P ~ ) I / ( P ~ - P ~ ) ,  P z < P o ,  (6.4) 
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FLB(P) = - ( I / @ )  In ZUB(P).  (6 .6)  
By variation of p1 and p2 respectively, upper and lower bounds to the entropy function 
can be calculated. Unfortunately, these variations have to be performed numerically so 
that the bounds cannot be given in analytical form. 

Approximations to the entropy function can be obtained from approximations to 
the partition function. With F = - (1 / /3 )  In Z it follows from equation ( 5 . 1 )  that 

s =in Z - p ( l / z ) a z / a p .  (6.7) 
For intermediate and high temperatures the exact upper bound to Z is shown in the 
following numerical calculations to be a good approximation to the PF, becoming better 
and better with increasing temperature. By differentiation of the upper bound and 
insertion in the preceding equation we obtain an approximate analytical result for SI: 
SI = In ZuB + t p h w * R *  + ~ r ( R * / 2  - p h o * Z $ ' ) / ( 1 +  q R * )  

+ [ ~ + 5 - ~ , / , ( 5 ) / K i / 4 ( 5 ) 1 [ 2 ~ ~ ( 2 P A w * Z $ ~  - R * ) / ( 1 +  EYR") 
+ ( R *  - 4 p h ~ * Z : ~ ) / R  *I. 

To evaluate this equation one has to look for a minimum of ZUB with respect to w *  by 
numerical variation. This U* -value is inserted in the preceding equation. For simplicity 
we took U *  = w and for ZuB a form which could be manipulated more easily by 
substituting the Bessel function by the parabolic cylinder function according to equa- 
tion (4.7). 

We used for the parabolic cylinder functions the tables given by Abramowitz and 
Stegun and five-point Lagrange interpolation. It also follows that H, E, C, . . . can be 
calculated in analytical form using ZuB with and without variation of the frequency. 

7. Numerical results and discussion 

7.1. Results for the PF 

First we want to point out the way we did the numerical calculations. The lower as well 
as the upper bound for both the quartic anharmonic oscillators and the two quartic 
coupled oscillators are analytical functions of the variation parameters w* and w ? ,  w z  
respectively. Because of the complex structure of these functions, maxima of the lower 
bounds and minima of the upper bounds with respect to the variation parameters 
cannot be given in closed form. Therefore, we varied the frequencies numerically, 
looking for improved values of the bounds. Though we cannot claim these improved 
bounds to be the optimal ones, the gap between the still exact bounds becomes 
narrower by this procedure. For one-dimensional cases the transcendental equation for 
w* can be solved by iteration, but for coupled oscillators we get coupled transcendental 
equations making the calculations complicated. 

Results of the numerical evaluation of different approximations to the partition 
function of the quartic anharmonic oscillator are shown in tables 1 and 2 in terms of a 
reduced inverse temperature E = p h w  and of the anharmonicity constant A. One sees 
that the bounds are improved considerably by the variation of the frequency. The 
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agreement with the numerical partition function from the Hioe and Montroll eigen- 
values is quite good even for large anharmonicity. The values calculated from the 
corrected formula for the free energy given by Schwarz (1976) are reasonable only for 
high temperatures and large anharmonicities. From the results of table 1 it follows that 
for small and intermediate anharmonicity and for intermediate and high temperatures 
the arithmetic mean of the upper and lower bounds is a good approximation to the 
partition function. As the lower bound can be calculated also for asymmetric anhar- 
monicity and for coupled oscillators, we suggest the lower bound as a fair approxima- 
tion for calculations of level densities of complex oscillator systems. 

We calculated the PF of the QA also by second-order perturbation theory and 
compared the result with the upper and lower bounds, and, where possible, also to the 
numerical PF from the Hioe-Montroll eigenvalues. As we expected from previous 
calculations of the molecular PF (Witschel et a1 1977), thermodynamic perturbation 
theory is very useful for intermediate temperatures and not too strong anharmonicity. 
For intermediate anharmonicity and high temperatures the results fall out of the exact 
bounds, leading to meaningless numbers which are wrong by a factor of lo2. 

Results for the system of two coupled quartic anharmonic oscillators defined by 
equation (3.8) are known neither from analytical nor from numerical calculations. 
Therefore, the results of table 3 for large and of table 4 for small anharmonicity and 

Table 1. Comparison of different bounds to the PF of the .aA.  ZLB=lower bound; 
ZtB = lower bound with variation of the frequency; Z, = numerical PF from the Hioe- 
Montroll eigenvalues; Z, = approximate PF by Schwarz (misprint corrected); ZhB = upper 
bound including variation of the frequency; ZuB =upper  bound; E = p h w ,  A =anharm- 
onicity constant. 

0.2 
0.2 
0.2 
0.2 
0.2 
0.6 
0.6 
0.6 
0.6 
0.6 
1.0 
1 .o 
1.0 
1.0 
1.0 
2.0 
2.0 
2.0 
2.0 
2.0 
5.0 
5.0 
5.0 
5.0 
5.0 

0.01 
0.1 
0.5 
1 *o 

10.0 
0.01 
0.1 
0.5 
1.0 

10.0 
0.01 
08 1 
0.5 
1.0 

10.0 
0.01 
0.1 
0.5 
1.0 

10.0 
0.01 
0.1 
0.5 
1.0 

10.0 

4.292 1 
1,102 7 
0.002 6 
o*ooo 001 

1.557 1 
0,966 2 
0,115 9 
0.008 2 

0.926 4 
0.675 3 
0,165 7 
0,028 6 

0.414 6 
0.328 5 
0.116 8 
0.032 0 

0.079 52 
0,056 22 
0.012 04 
0.001 75 

* * *  

* * *  

* * *  

* * *  

* * *  

4.505 0 
3.393 3 
2.488 9 
2,137 2 
1.218 8 
1.570 0 
1.295 8 
0.982 9 
0.843 5 
0.436 0 
0.929 7 
0.790 8 
0.600 2 
0.507 7 
0.220 2 
0.415 2 
0.356 1 
0,254 5 
0.200 5 
0.046 8 
0.079 61 
0.060 85 
0.029 95 
0.017 21 
0.000 47 

- 
- 
2.573 1 
2,215 3 
1.266 4 
- 
- 
1,007 3 
0.866 1 
0.448 5 
- 
- 
0.612 5 
0.518 8 
0.226 9 
- 
- 
0.259 6 
0.205 0 
0.049 3 
- 
- 
0.031 19 
0.018 06 
0.000 54 

- 
- 
1.101 0 
1.192 0 
1.071 2 
- 
- 
0.642 6 
0.614 6 
0,345 1 
- 
- 
0.147 0 
0,179 9 
0.243 1 
- 
- 
0,062 95 
0.073 52 
0.119 2 
- 
- 
- 
- 
- 

4.529 5 
3,472 8 
2.577 9 
2.222 5 
1,282 7 
1.572 3 
1.316 0 
1.015 5 
0,878 5 
0.498 7 
0.930 5 
0.801 4 
0.621 9 
0.532 9 
0.299 7 
0.415 5 
0.361 3 
0,269 2 
0.226 4 
0,127 3 
0,079 72 
0,063 40 
0.042 66 
0.035 87 
0,020 17 

4.530 3 
3.479 2 
2,593 0 
2,242 5 
1.323 9 
1,572 8 
1.324 3 
1.041 2 
0.915 1 
0,556 8 
0,931 0 
0.810 1 
0.652 7 
0.578 3 
0.357 6 
0.415 8 
0.370 0 
0.303 8 
0.271 0 
0.169 9 
0,079 98 
0.069 10 
0.055 36 
0,048 96 
0,030 16 
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Table 2. Comparison of the PF of the QA by perturbation theory with bounds and numerical 
results. ZTp = PF in second-order thermodynamic perturbation theory; the other symbols 
are the same as in table 1. 

0.2 
0.2 
0.2 
0.2 
0.4 
0.4 
0.4 
0.4 
1.0 
1.0 
1.0 
1.0 
2.0 
2.0 
2.0 
2.0 
5.0 
5.0 
5.0 
5.0 

0.005 
0.01 
0.05 
0.2 
0.005 
0.01 
0.05 
0.2 
0.005 
0.001 
0.05 
0.2 
0,005 
0.01 
0.05 
0.2 
0.005 
0.01 
0.05 
0.2 

4.701 0 
4,505 0 
3.781 0 
2.995 5 
2,400 8 
2.336 0 
2.0478 
1.671 3 
0.943 7 
0,929 7 
0.851 2 
0,715 5 
0.420 2 
0.415 2 
0,383 8 
0.318 1 
0.081 09 
0.079 61 
0,069 81 
0.048 63 

- 
3.082 3 
- 

- 
0.323 8 
- 

- 
0.050 31 

4.779 5 
4-896 8 

17.696 
253.48 

2.408 6 
2.375 5 
3,611 4 

0.944 1 
0.931 6 
0.936 1 
2.606 2 
0.420 2 
0-415 4 
0,394 4 
0,588 4 
0.081 10 
0.079 64 
0,071 26 
0.091 54 

32,006 

4.712 9 
4.529 5 
3.846 5 
3,082 9 
2.403 2 
2.342 1 
2.072 4 
1.712 8 
0.944 0 
0.930 5 
0.857 3 
0.731 1 
0,420 2 
0.415 5 
0.386 3 
0,327 1 
0.081 12 
0.0’19 72 
0.071 02 
0.053 64 

Table 3. Comparison of different methods for the partition function of two quartic coupled 
oscillators (equation (3.8)); strong coupling case: w2 = 0.75wl, A l  = A2 = ( 0 . 0 6 4 h ~ ~ ) ” ~ ,  
€1 =Ohwl;  ZLB=lower bound; Z t B  Glower bound with variation of the frequencies w f ,  
wg ; ZTp second-order thermodynamic perturbation theory; Z tB =upper bound with 
variation of the frequencies w f ,  0; ; ZUB=upper bound. 

€1 ZLB Z t B  Z T P  ZhB Z U B  

0.5 0.607 2.68 131.0 3.44 3.45 
1 s o  0.385 0.745 8.64 0.899 0.905 
1.5 0,209 0.320 1.89 0.382 0.386 
2.0 0.116 0,162 0.673 0.195 0.198 
2.5 0,0665 0.0888 0.306 0.109 0.111 
3.0 0.0387 050506 0,161 0,063 7 0.065 3 

Table 4. Comparison of different methods for the partition function of quartic coupled 
anharmonic oscillators (equation (3.8)); weak coupling case: w2 = o*75wl, A 1  = A2 = 
(0.004hw1)”4; notation as in table 3. 

ZLB Z T P  

0.5 4.586 4.702 5.077 4.797 4.799 
1.0 1.161 1.170 1.192 1.181 1.181 
1.5 0.484 9 0.487 0 0.491 3 0.490 3 0.490 4 
2.0 0.246 1 0,246 1 0.248 2 0,248 1 0,248 3 
2.5 0.137 5 0.137 5 0.138 4 0,138 7 0,138 7 
3.0 0.081 12 0.081 12 0.081 57 0,081 73 0.081 84 
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coupling are interesting. For large anharmonicity we found in table 3 that perturbation 
theory is meaningless in this case. The gap between upper and lower bounds is of the 
order of 20%, which after forming the arithmetic mean may lead to a suitable 
approximation for the calculation of coupling corrections to the level densities of such 
systems. The Hioe-Montroll method for finding the eigenvalues of anharmonic 
oscillators presented difficulties to us because of the asymmetric terms aQiQ; which 
are as yet not solved. We therefore consider for the moment variational methods as a 
rough workable technique for treating such systems. For small anharmonicity and 
coupling and for intermediate temperatures, table 4 shows that thermodynamic 
perturbation theory will be a good approximation to the partition function. For el  < 2 
and for the constants’give, the perturbation results fall out of the bounds, but are down 
to el  = 0.5 of the right magnitude. 

7.2. Calculation of the entropy 

Using the Ruelle-Fisher technique, we calculated exact bounds to the entropy from 
exact bounds to the PF including variation of the frequency and compared these results 
with numerical data from the Hioe-Montroll eigenvalues and the approximate formula 
of Schwarz (1976). In contrast to the bad agreement of the PF, even if a printing error is 
corrected, the agreement for the entropy is surprisingly good. We also calculated SI 
from the unvaried upper bound. Comparison shows the very good agreement with the 
numerical entropy in table 5. It would not be reasonable to calculate a ‘lower 
bound-entropy’ by differentiation and insertion into equation (3.5) as, in contrast to the 
upper bound, the lower bound will be nowhere approached exactly for a certain 
temperature. 

Table 5. Comparison of different methods for the entropy function of the QA. SLB = lower 
bound, SUB = upper bound by Fisher-Ruelle technique; SI = entropy function from the 
analytical expression for ZuB; S H M  = numerical entropy function from Hioe-Montroll 
eigenvalues for A 20.2;  Ss = approximate entropy function from Schwarz’s article for 
A 20.2;  e, A the same as in table 1. 

€ A SLB SI SHM ss S U B  

0.1 
0.1 
0.1 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 

0.1 
0.2 
0.5 
0.1 
0.2 
0.5 
0.1 
0.2 
0.5 

2,083 2.645 - - 
1.906 2.496 2.497 2.555 
1.679 2.289 2.290 2.326 
0.987 1.353 - - 
0.808 1.232 1.234 1,348 
0,567 1.052 1.060 1.119 
0.492 0.799 - - 
0.324 0.699 0.703 0.828 
0.108 0.540 0.558 0,599 

3.271 
3.161 
2.987 
1.768 
1.733 
1.660 
1,166 
1.183 
1.192 

7.3. Conclusion and discussion 

We summarise the results in a few points. 
Trace inequalities can be used for the calculation of exact upper and lower bounds to 

the PF and the entropy including variation of the frequency, and, for asymmetric 
potentials, variations of the distance. They can be used to check approximate methods 
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and are, therefore, a statistical counterpart to the variational bounds to eigenvalues 
given by Bazley and Fox (1961) and by Reid (1965). 

We generalised the technique to coupled anharmonic oscillators of the quartic type 
and gave numerical results for a special Hamiltonian H5, postponing the results for 
other types to a later paper. 

Finally, it should be remarked that the exact upper bound is a good approximation 
to the PF which is approached at high temperatures. As we could give ZUB in terms of 
special functions, it was possible to derive the thermodynamic functions again in terms 
of special functions. Thus, it is possible to derive level densities for some types of 
quartic-quadratic Hamiltonians in analytic form. 
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Appendix. Sketch of formulae used in the text 

From the Laplace type integral 

lom tu-’ exp(-at2-st) dt = (2a)-”/*r(v) e~p(s~/8a)D-.[s(2a)-”~]  

follows, after the substitution t = zZk ,  the integral of the preceding text 

(A21 
lom z2’-’ exp(-az 4 2  -sz ) dz = $(2a)-,j2r(v) exp(s2/8a) D-,[s(2a)-”2]. 

- A x 2  e 
l om(x2+a  ) dx = $ exp(a2A/2)Ko (a2A/2), A BO, a 2 > 0 ,  (A3) 

where KO is a modified Bessel function. 

formulae are necessary: 
For the calculation of thermodynamic functions some diff erentiation-recursion 

-2KI(z) =K,-l(z)+K,+i(z), -2(v/z )K,(z 1 = K,-l(z) - K,+1(z), (A41 

DI (2) + $au (2) - vD,-1(z) = 0, (A5 1 D I ( Z  ) - ~ z D ,  ( Z  ) + D,+ 1 ( ~ )  = 0. 
Parabolic cylinder functions are tabulated (Abramowitz and Stegun 1965, p 702) in 
terms of U(a, x ) ,  which are related to the D-,(x)  notation by 

U(a, x )  = D-a- l /~ (~ ) .  
Five-point Lagrange interpolation is sufficient to get five-figure accuracy everywhere. 
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